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How Does the Border Affect Productivity?
Evidence from American and Canadian
Manufacturing Industries*

Robert Vigfusson'

Abstract

This study reports on how much productivity fluctuations are industry specific versus
country specific. For the manufacturing industries in Canada and the United States, the
correlation between cross-border pairings of the same industry are found to be more often
highly correlated than previously thought. Furthermore, the study confirms earlier findings
that the similarity of input use can help describe the comovement of productivity fluctua-
tions across industries.
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1 Introduction

A national border often appears to reduce the comovement between economic variables that
are on opposite sides of the border. This reduction is called the border effect. This paper
examines whether the border affects industry-level productivity fluctuations. Knowing whether
the border effect extends to productivity fluctuations would be of interest for several reasons.
Evidence either for or against a border effect would help us understand the true nature of these
productivity fluctuations. Evidence that productivity fluctuations are industry-specific shocks
that affect industries equally on either side of a national border would be evidence in favor of
interpreting productivity fluctuations as being caused by changes in technology. Such a finding
would, therefore, support using these industry-level measures to examine technology-driven

explanations of economic fluctuations (as in Basu, Fernald, and Kimball. 2005). Evidence
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of a large country-specific factor would emphasize the need to gain greater understanding of
the role of government, culture and other country-specific factors in determining industry-level
productivity.!

The current paper describes a study of the productivity growth of manufacturing industries
in Canada and the United States. Because these two countries are similar, one might expect to
find no border effect.? Studies of both trade and prices, however, find border effects. McCallum
(1995) and Helliwell(1996) find large border effects for trade. Recent work by Anderson and
Van Wincoop (2003) suggests that the border effect is smaller than is reported by McCallum
and Helliwell, but that the border still reduces trade 44 percent. Engel and Rogers (1996)
find a border effect for Canada and the United States for prices. Furthermore, Costello (1993)
studies the cross-country industry-level productivity correlations for some OECD (Organization
for Economic Co-operation and Development) countries. In her study, none of the correlations
between Canadian and American versions of the same industry are statistically significant.
Because several pairs of American industries and several pairs of Canadian industries had
significant correlations, Costello’s finding of no significant cross border correlations can be
interpreted as evidence of a considerable border effect.?

In this paper, the KLEMS data sets from Statistic Canada and the U.S. Bureau of Labor
Statistics are used to measure productivity.* These data sets are what the respective statistical

agencies use to measure multifactor productivity in the manufacturing industries. The acronym

'If productivity fluctuations do not depend on industry characteristics but rather are country-specific phenom-
ena, would this finding be evidence against technology-driven models? If one could further identify that these
productivity fluctuations are being driven by demand factors, then this additional finding would be evidence
against technology-driven models. However, technology-driven models would be compatible with country-specific

technological factors driving the business cycle.

% Although the countries are similar, Baldwin and Sabourin (1998) report survey evidence that Canadian and

American firms differ on their views on technology adoption.

3Costello does not use the term border effect; however, I would describe her finding that “productivity growth
is more correlated across industries within one country than across countries within one industry” (p. 207) as

evidence of a border effect.
4One desirable extension of this research would be to compare industry-level productivity fluctuations across

regions in the United States with each other and Canadian industries. Unfortunately, the data are not available

to do such a comparison.



KLEMS stands for capital, labor, energy, materials, and business services. For each industry,
the data set reports both an index of the amount used (the volume) and the nominal expenditure
(the value) on any given input. The data set also reports the value and volume of each industry’s
gross output.

An important contribution of this study is that it uses information on intermediate inputs
to construct productivity.® Other productivity studies, including Costello (1993), use data sets
that lack information on intermediate inputs. Because productivity is measured as a residual,
omitting any variables may result in an inaccurate measure.® In particular, Basu and Fernald
(1995) argue that using data only on capital and labor to measure productivity can result
in an inaccurate measure that overstates the degree of cross-industry comovement. Another
advantage of the KLEMS data set is that because it has more industries, the study reports
the correlations of ten additional industries beyond the five studied in Costello. The increased
coverage of the KLEMS data set results in finding more positive correlations than are found
for a data set restricted to Costello’s original five.

Another advantage of calculating productivity with data on intermediate inputs is that
this method allows a reassessment of Conley and Dupor (2003), who study the industry-level
comovement of productivity growth rates in the United States. Conley and Dupor construct
their productivity series by using information on the changes of output, labor, and capital
services (measured using electricity usage). Because U.S. data on material usage is not available
at the quarterly frequency, Conley and Dupor can not use material usage data to construct their
quarterly productivity series. Conley and Dupor’s finding of a high degree of comovement could
be subject to the criticisms of Basu and Fernald (1995). In particular, Basu and Fernald report
that the earlier comovement results of Caballero and Lyons (1992) were highly dependent on
constructing productivity without using data on material usage.

Conley and Dupor’s comovement results are important because they provide an organizing

principle for the observed empirical comovement patterns. In particular, Conley and Dupor

®Other papers, such as Basu, Fernald, and Kimball (1999), gave used intermediate inputs to construct pro-

ductivity measures but have not looked for border effects.

% Appendix A provides details.



provide evidence that comovement between industries depends on the similarity of the inputs
that each industry uses. (Although they have no quarterly data on intermediate input use,
Conley and Dupor can classify industries by input use from the input-output tables. These
benchmark input-output tables, however, are available only every five years.) Comovement has
often been viewed as a defining characteristic of business cycles. Insights into comovement,
therefore, should lead to a better understanding of business cycles. Confirmation of Conley and
Dupor’s results would emphasize the need for further investigation into how input usage leads
to comovement. As one step in that investigation, I present a simple model that implies that
comovement will depend on input usage.

The empirical evidence presented here confirms Conley and Dupor’s results in two crucial
ways. First, constructing the productivity series from data on material usage does not qualita-
tively change the observed comovement patterns in the United States. Second, the dependence
on input similarity is not restricted to the United States. In Canada, comovement also depends
on input similarity.

This study differs from others in the literature in that it reports results for three different
productivity measures— labor productivity, multifactor productivity as reported by the national
statistical agencies, and an estimated productivity series that controls for the possibility of non-
constant returns to scale and varying unobserved utilization. Each measures has its relative
advantages; but all three measures have similar results for productivity comovement.

In providing evidence concerning productivity comovement, this study uses instrumental
variables to estimate returns-to-scale in production. These estimates are of independent interest
and have been part of a large literature (e.g. Burnside, 1996). For the U.S. industries, statistical
tests fail to reject the null hypothesis of constant-returns-to scale. For Canadian industries,
statistical tests reject the null hypothesis of constant-returns in favor of increasing-returns to
scale.

The rest of the paper has the following structure. Section 2 describes the data and some
of the measurement issues in constructing productivity series. Section 3 reports correlations
between industry pairs to provide evidence against earlier claims of a large border effect. Section

4 shows how, as in Conley and Dupor (2001), using information on input usage can concisely



summarize the comovement patterns found in the data. Furthermore, this section shows that
variation in input usage has a larger effect on correlations than does border separation. Section

5 offers conclusions and provides suggestions for future research.

2 How to Measure Productivity

Productivity measures how much output can be produced for a given amount of inputs. The
standard approach is to linearize a production function and thereby express the growth in
productivity dz as the growth in output dy minus the growth in inputs. Three measures of
productivity are considered here. Beginning with the most general, output Y is produced by
function with inputs: technology Z, capital services K, labor services L, and intermediate

inputs (energy E, materials M, and business services 5).

Y = F(K,L,E,M,S, Z)

Linearizing the production function results in the following equation that relates the growth
rate in productivity dz as the difference between the growth rates of output dy and dy the
weighted sum of the growth rates of capital services dk, labor services dl, energy de, materials

dm, and business services ds

dz = dy—dyx (1)

dx = v,dk+y,dl+vy.de+ v,,dm + .ds (2)

The output elasticities v are calculated in several different ways. Statistics Canada and the
BLS in calculating their productivity measure — multifactor productivity (MFP) — they assume
that returns-to scale are constant and that the values of ~; are the nominal expenditure on an

input j as a share of the total nominal value of gross output, s; resulting in the input growth



rate being dx

dz* = dy—dx (3)

dr = spdk+ sidl + sede 4+ spdm + sgds (4)

In the measurement of productivity, the inputs are referred to as capital services and labor
services rather than capital and labor. This distinction emphasizes the need to differentiate
between changes in output due to changes in inputs and changes in output due to better use
of the same inputs. For example, a fixed amount of capital (a particular machine) can be
run at a greater utilization rate and thereby provide additional capital services. Therefore, this
paper controls for these fluctuations in utilization. In Burnside Eichenbaum and Rebelo (1993),
Costello (1993), and Conley and Dupor (2003), changes in capital services are not measured
with data on the measured capital stock but are rather approximated by changes in electricity
consumption. Because dropping measured capital may be controversial, the approach taken
here is based on the work of Basu, Fernald, and Kimball.” These authors have two goals — to
relax the assumption of constant returns to scale and to correct for utilization. I attempt to

meet these goals by estimating the following equation:

dz* = dy — pdzx + Ede (5)

The coefficients i and £ are estimated by an instrumental variables regression. The values of
the shares, s;, are the input shares. Changes in energy usage are used to approximate for changes
in capital and labor utilization. The motivation for this approximation is the assumption that
energy and input utilization can be varied simultaneously. Given this assumption, a cost-

minimizing firm will increase both energy and utilization together to increase output.®

"Basu and Fernald (2000) discuss other approaches that one can use to approximate for changes in utilization.
Their preferred approach, however, requires data on average hours worked per employee which is not available
for the Canadian data. Average hours data are available for U.S. industries but not on a KLEMS-compatible

basis.

8In more formal terms, using energy to approximate for utilization implies that, for empirically relevant

values, the output expansion path is an upward sloping line. The assumption would be satisfied if output were



More-restricted measures are often constructed because of data limitations. An alternative
approach is to ignore the data on capital usage and focus entirely on the amount of gross output

produced using labor. Labor productivity is defined as

dzt = dy — dl (6)

The data set studied here is the KLEMS data set for Canada and the United States for
1960-97. Using this data set rather than other options has advantages. First, for any given
industry, the statistical agencies construct output and inputs with a goal of being consistent.
Other studies that have examined productivity often combine output data reported by one
statistical agency with input data reported by another. For example, industrial production
from the Federal Reserve is often matched with hours data from the BLLS Current Employment
Statistics survey. Differences in the industry definition between inputs and output may result
in mismeasured productivity.” The KLEMS database is less at risk. An additional advantage
of using the official KLEMS data sets from the two countries is that others have already studied
the comparability of the two data sets. Eldridge and Sherwood (2001) found that the differences
for the two data sets are minor and do not contribute substantially to any differences in average
productivity growth.

The industries studied here are the two-digit Standard Industrial Classification (SIC) man-
ufacturing industries. These industries can be divided into two groups: the durable goods
industries and the nondurable goods industries. Table 1 lists each industry studied in this pa-
per and its corresponding U.S. 1987 SIC code. The Canadian industries are mapped into their

U.S. counterparts.

produced, for example, by a homothetic production function (such as Cobb-Douglas) using energy and utilization

with constant costs of increasing either input. Basu, Fernald, and Kimball discuss more general restrictions.

9Choosing to combine different data sources is one of the many trade offs a researcher must make. For

example, choosing to use the KLEMS data set implies that the researcher also chooses to work with annual data.



3 Empirical Results

The empirical results are presented in four parts. First, I describe the estimated coefficients of
the production function that are used to construct the estimated productivity series. Second, I
report pair-wise correlations for both the estimated productivity series and also the published
labor and multifactor productivity series. The pair-wise correlations make clear that the border
effect is smaller than had been previously reported. Third, I characterize the dependence of the
observed productivity comovement on the similarity of input use. Fourth, I present results for
hypothesis testing.

Two approaches are used to measures the dependence of comovement on input use. The
first approach estimates a covariance matrix that depends on the input shares of capital, energy,
labor, and materials. The second approach looks at material usage more carefully. In particular,
the correlation between industries is assumed to depend on the similarity of more-detailed data
on material usage. For this second approach, two sets of empirical results are reported. The
first set of results is from linear regression of the sample correlation between industry pairs on
the distance measure of input use similarity. The second set of results is based on the semi-
parametric approach of Chen and Conley and, hence, is closer to the estimation strategies used
in Conley and Dupor. Both approaches support the conclusion that the observed comovement
is dependent on the similarity of input use. To strengthen these conclusions, several alternative
hypotheses are tested. The hypothesis testing confirms that input use is a useful organizing

tool. Further refinement, however, is needed.

3.1 Estimation-Based Productivity Series

To compute the correlations between American and Canadian productivity series, I need to
estimate the most general production function and the resulting productivity series. As is
done in Basu, Fernald, and Kimball and in Conley and Dupor, I characterize the industries
as durable or nondurable industries. Using these categories, I then assume that the same
set of coefficients applies for all industries from a given country. Therefore, only four sets of

coefficients are estimated — Canadian durables, Canadian nondurables, American durables and



American nondurables.

For industry j the productivity series is the residual from the following regression.

Alny; = pAzj+EAIne; + 2 (7)

where Az is defined as

Azxj = spAlnk 4+ s;Anl; + seAlnej + sy, Alnmj + s;Alns;

The productivity series is defined as z. The observable variables in the equation are output
1y, capital k, labor [, energy e, materials m, and services, s. Fluctuations in utilization rates are
approximated by changes in energy usage.'

The values of the observed inputs may depend on the value of the productivity shock.
Therefore, a consistent estimate of equation 5 requires using instrumental variables. For both
countries, the estimation process uses five instrumental variables to estimate the four coeffi-
cients. For the American industries, the instruments are the current and lagged values of the
changes in the log of real U.S. defense expenditure and the current and lagged values of the
changes in the log of the IMF spot oil price.'! An additional instrument is the current value of
a monetary policy shock taken from the vector autoregression estimated in Christiano Eichen-
baum and Evans (1999).!? For Canada, the instruments include current and lagged changes
in the oil price and the U.S. monetary policy shock. An additional instrument is the current
change of non-oil commodity prices. That the Canadian economy responds to commodity price

fluctuations is well established. For example, Amano and van Norden (1995) report on the

10Some might be concerned that energy usage may reflect weather fluctuations. Because the energy usage data
are on a national basis, geographic diversification should limit dependence on weather. In addition, because the

data are annual, seasonal fluctuations should be smoothed.

"' These instruments are common used in the literature including by Basu Fernald and Kimball (2005).
12In the Christiano Eichenbaum and Evans paper, the sample period is only from 1964 to 1995. I extend the

sample back to 1959 and forward to 1997 to match the span of the KLEMS data. The shocks do result in similar
impulse responses. Because of data revisions, the shocks identified here, however, are not identical to the shocks

they identify. The correlation between their monetary policy shocks and the ones used here is 0.62.



strong relationship between the Canadian exchange rate and commodity prices. Because the
productivity fluctuations may be correlated across industries, the equations for all the indus-
tries in a particular country are estimated jointly by using three-stage least squares (two-step
general method of moments GMM). The weighting matrix is constructed by using the standard
sample covariance matrix. Standard asymptotic confidence intervals are also reported.'3

Table 2 reports the estimated coefficients. The coefficients do vary between durables and
nondurables and between Canada and the United States. For the United States, the return-to-
scale estimates are sightly below one, an indication of decreasing returns to scale. However, as
indicated by the confidence intervals, one would fail to reject the null hypothesis of constant
returns to scale. In Canada, the estimated coefficients are consistent with both kinds of in-
dustries having increasing returns to scale, but only the estimate for the Nondurable industries
is statistically significant. Furthermore, as discussed in appendix B, an alternative statistical
test, one valid under the hypothesis of weak instruments, would fail to reject constant returns
to scale even for the Canadian nondurable industries.

For the United States, economists have found different estimates of the relative size of the
returns-to-scale in the durable and non-durable goods industries. Basu, Fernald, and Kimball
(2005) found that nondurables have lower returns to scale than durables, but Conley and Dupor
found the opposite result. Given the wide confidence intervals of the two estimates, the results
reported here are insufficient evidence to decide the issue.

The utilization coefficient estimates are always positive, a finding consistent with the theory
that energy and utilization move together and that increased utilization leads to higher mea-
sured productivity. The estimates, however, are imprecisely estimated. In both Canada and the
United States, estimates of the utilization coefficient are larger for the durable goods industries
than for the nondurable goods industries. This result suggests a response to the more-cyclical

demand for durable goods than for nondurable goods.

13 Appendix B discusses the possibility of weak instruments and how it might affect the inference concerning

the size of the border effect.
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3.2 Pair-wise Correlations

This section reports the sample correlations between industry pairs across borders and also
for different industries within a country. These correlations are reported for several different
productivity measures— labor productivity, the multifactor productivity measures reported by
the BLS and Statistics Canada, and the estimated productivity series. In all cases, the measures
are constructed by using the BLS and Statistics Canada KLEMS data sets.

Studying sample correlations is analogous to Costello (1993).14 For Canada and the United
States, Costello does not find any statistically significant correlations between an American
industry and its Canadian counter-part (own-industry correlation). Costello, however, does
report a number of significant correlations for industries that are located in the same country.

Table 3 reports the correlation between the U.S. and Canadian versions of the same industry.
This table directly addresses Costello’s finding of no statistically significant cross-border own-
industry correlations. Of the fifteen industries studied here, labor productivity correlations
are statistically significant for nine industries, multifactor correlations are significant for twelve
industries, and the estimated productivity series has statistically significant correlations for
ten industries. The large percentage of statistically significant correlations suggests that the
border effect is less important than Costello claims. A major reason for the different results
is the industries studied. The five industries that Costello studies are some of the least likely
to have significant cross-border correlations. For the results reported here, both food and
textiles are never statistically significant. For all three measures, the chemicals industry is
statistically significant. Both primary metals and fabricated metals have statistically significant
correlations for the MFP measure. For the estimated productivity series, the fabricated metals
industry does have a statistically significant correlation, whereas the primary metals industry
does not. Overall, these results suggest that Costello’s conclusion of a large border effect is
highly dependent on the industries that she studied. Studying a greater number of industries
reverses her conclusion and allows us to conclude that the border effect is smaller than previously

claimed.

1 Although the sample period is longer than Costello’s, using the shorter sample is not responsible for the

results.
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3.2.1 Further Diagnostics

Table 4 reports further diagnostics of the productivity series. For each industry, the table
reports the standard deviation of the MFP measure and the ratio of that measure to two others
— the labor productivity series and the estimated productivity series. One of the standard
explanations for mismeasured productivity growth is labor hoarding, in which workers vary their
effort over the business cycle. If labor hoarding were a serious issue at the annual frequency,
then the labor productivity series would have a much higher standard deviation than the MFP
measure. If the estimation procedure actually corrects for the roles of market power and the
changes in utilization, then the estimated productivity series should have a much lower standard
deviation than the multifactor productivity series.!®

As reported in Table 4, labor productivity often has a much larger standard deviation than
does the MFP. A larger standard deviation is suggestive of a labor hoarding hypothesis. Labor
hoarding is most likely to occur in industries with highly skilled workers that are difficult to
replace. In both countries, the two industries with the largest ratios are apparel and trans-
portation equipment. That the industry that produces airplanes and automobiles is a high
skill industry seems sensible. The high ratio for apparel is perhaps more puzzling because it
contradicts conventional stereotypes.

For Canada, the estimated productivity series has, on average, a much lower standard
deviation than the MFP measure. The lower value further suggests that the estimation process
did correct for the role of utilization. In particular, the standard deviation for the durable
goods industries is much lower. It is commonly thought that durable goods industries would
be the categories most likely to have large time-varying utilization rates.

Table 4 also reports the ratio of the variance of U.S. industries with their Canadian counter-

part. There is evidence of heterogeneity. Some Canadian industries are more volatile than their

5The claim may be false if utilization changes and technology changes were negatively correlated. Many
macroeconomic models would have a positive correlation. Of course, counter examples do exist. For example,
suppose that an increase in utilization results in a greater depreciation rate for capital. In a model with investment
adjustment costs, utilization and technology could then be negatively correlated. A reduction in utilization would

be way to avoid the investment adjustment costs and to preserve capital for the next period.
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American counterparts and some are less volatile. Further work studying this heterogeneity

would be useful.

4 Input Usage and Comovement

Conley and Dupor find that input usage helps describe productivity comovement among U.S.
industries. Using different data sources and a variety of estimation strategies, I further explore
how much input-usage explains productivity comovement. My basic finding is that input usage
matters. Furthermore, by examining simultaneously both the border effect and input usage, 1
am able to characterize the size of the border effect. In particular, industries that are separated
by a border and use similar inputs are, on average, more highly correlated than industries that

are located in the same country but use dissimilar inputs.

4.1 Economic Modeling

Conley and Dupor present an econometric model in which the covariance between industries
is a function of the similarity of input usage. However, they do not explicitly model why
input usage might matter.'® In this section, I present a production function where productivity
growth depends on input usage because of input-specific productivity growth. The model is the
following: Industry j in country A produces output Y; by combining inputs z;; in the following

production function:
N

Y74 =040, [ ] (wjivi) 7",
i=1

where 04 is an aggregate productivity term, 6; is an industry-specific productivity term, and v;
is an input-specific productivity term. For intuition, the reader could think of # 4 as gains due to
national infrastructure; 6; from industry-specific production improvements that are not readily
transferable to other industries, such as the steel industry finding an improved way to make steel;

and v; as a general technology that makes better use of a particular input 7. Examples of input-

Y The closest model is Dupor (1996), in which productivity comovement depends on where industries sell their
output. The evidence in Conley and Dupor, however, is more supportive of productivity comovement depending

on where industries buy their inputs.
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specific improvements include vintage capital, human capital, labor-augmenting technological
progress, or even something as simple as fewer defects per box of metal fasteners.!” The log
of each of these productivity terms is assumed to be a random walk with the disturbances
having a constant variance and being independent of each other. Suppressing time subscripts

for notational simplicity, these assumptions can be expressed as:

Alnv, = wu;
AlnHj = &5
Alnfy = eaq,

where [u;, £, 4] are independent both across time and each other with variances {a%i, 03 > 0124} .

The change in the log of industry-level productivity, Azj‘, would be the following
Azf‘ =Alnfs+ Alnb; + Z’yﬁAlnvi
Hence, the covariance between any two industries in the same country can be written as follows:

EAz'Az! = E(AIn6a)°+E(AMO;AM0:)” + > (vjivi) E (Alnw;)?
= ‘7124"‘2(7]‘@"71@1‘) o2 ifj£k

17 Although the BLS does account for changes in skill composition for private business labor productivity, the

BLS does not correct for changes in skill composition at the industry-level. (BLS Handbook of Methods, 1997).

An industry that reduces the fraction of defective output would have a measured increase in productivity only
if the defective output had not been previously counted as output. Furthermore, if improved inspections reduced
the amount of output sold but not produced, then measured productivity would actually fall. In such a case, a

lower rate of defective inputs would then show up as an improvement in productivity for the using industry.

14



Cross-border pairs, with one industry in Country A and one in Country B, are similar — except

that they do not share a common aggregate term.

EAz'Azf = 0+ E(Al0;AM0:)" +Y (v;74) E (Alnw;)?
= 0+ > (viivw) 0w fi#k

= 0403+ (1) 0% ifj=k

Assuming perfect competition, constant-returns-to-scale, and industry-level cost minimization,
the above Cobb-Douglas production function implies that 7;; equals the industry’s expenditure
share, sj;. If all the individual input-productivity terms (c2,) have the same variance (02), the

resulting covariance function would be the following:

EAzjAz, = 0'124 + 03 ZSJ'Z‘SM ifj#£k

= ai—i—agj—i-a%Z(sﬁ)? if j =k

Therefore, the covariance between two industries is larger for those industries that have more
similar input shares because more similar shares implies a larger value for the product of input

shares Y sjiSg;.

4.2 Variance Decomposition

In the above model, common movements in productivity are due to both national factors and
input usage. This section reports estimates of the model and measures the importance of these
contributions.

The above model can be rewritten as follows. Take the observed productivity growth rates
Az for the n U.S. industries and n Canadian industries and stack these into a vector, Z;. For
this model, when there are two countries and k inputs, the process for these growth rates can
be written as follows

Zy = 1 [ ef €f :| + Sy + uy
where S; is the observed (n 4 n) by k matrix of input shares, €} and €f are two unobserved

15



country-specific shocks, v; is the k element vector of unobserved shocks and u; is a (n +n)
element vector of unobserved and uncorrelated shocks (note that k is smaller than n + n) and

where 1 is the matrix

1nx1 Onxl

Onxl lnxl

where 1, %1 is an n-by-one vector of ones and 0,,x1 is an n-by-one vector of zeros. This specifica-
tion is used to estimate how much of the observed variance of Z; is due to the country-specific
shocks, ef and ¢f, and how much is due to the combined effects of the input-specific shocks u;.

This model is estimated by using maximum likelihood where the likelihood is defined as

L(®,T) = ZT:In ((27r)_”/2 1972 exp [—%Zégt_IZéD

t=1

/
Qt = {i St} ¢ [i St] +7

where ® and T are diagonal matrices. In this section the input-usage .S; is measured using the
time-varying input shares for capital, labor, energy, and materials from the KLEMS database.
The results of this estimation are reported in Table 5. Both the aggregate shocks and the input-
specific shocks make important contributions to the variance of Z;. However, for both countries

and all three measures, the input-specific shocks are more important than the aggregate shocks.

4.3 Correlation Functions Based On Input Usage

This section reports estimates of comovement similar to Conley and Dupor. Unlike the previous
section, these results are for correlations rather than covariances. These results are reported for
correlation rather than covariance for four reasons. First, covariances are discussed in Section
4.2. Second, correlations are more readily interpretable than covariances. Third, the previous
literature in this field (Costello and Conley and Dupor) worked with correlations. Finally, using
correlations can result in a more parsimonious model. As is reported in Table 4, the standard
deviation of the productivity growth rates varies across industries. Because economy-wide

shocks are being used to explain comovement, variations in the standard deviation may cause

16



a problem for the estimation. In particular, the variance of economy-wide shocks is limited by
the size of the smallest industry-level productivity growth rate.!® For all four reasons specified

here, the following sections will report results for correlations rather than covariances.

4.4 Econometric Spatial Model

In estimating the covariance between industries, Conley and Dupor assume that the covariance

between any two industries can be written as a function ¢() of input share:

EAZjAZk =C (Sj’ia Ski) .

Furthermore, they assume that all of the information in the input shares s;; and s;; can be

expressed in terms of a measure of economic distance, defined as the Euclidean distance:

djk = \/Z (Sji — Ski)2 .

This specification implies that each industry has a location that is described by the vector s;
that describes its input shares {sji}fil. The covariance between two industries then depends

on the distance d;; between these industries’ locations; so ¢(d) can be estimated with a spatial

18 An example may help illustrate this point. Suppose that one wants to explain the time series for all of the
different industries {Azi:}._, using a single aggregate shock x; and industry-specific shocks ;. In particular,
consider the following time series.

Azt = Tt + Uit

The variance of Az;; can be written as the following:

However, with the assumption that z: is uncorrelated with u;:, the variance of x; cannot be larger than the value

of min {VARy;:}?_,. Working with correlations eliminates this constraint. An alternative model would be

Yit = QiTt + Uit

where «; is an industry-specific shift term. This term would relax the constraint on the VAR(z;). The relaxed

constraint would, however, come at the cost of many more coefficients to estimate.
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estimator:

EAzjAz, = c(dj) -

Note, that this distance is an economic distance not a geographic distance.”

Although Conley and Dupor use a non-parametric kernel regression to estimate c (), I esti-
mate ¢ () two other ways: a linear regression and the semi-parametric estimator from Chen and
Conley (2001). This semi-parametric estimator has the property that, with sign restrictions
on the coefficients, the resulting covariance matrix will be positive definite.?’ The Conley and
Dupor’s non-parametric estimator does not necessarily result in a valid covariance matrix. A

positive definite covariance matrix is a requirement for the hypothesis tests reported below.

4.4.1 Input-Output Tables

Before describing the regressions, this section discusses additional data on input usages. In
Section 4.2, 1T measure input usage by the input shares from the KLEMS database. This
measure, however, does not differentiate between different kinds of materials. The Input-Output
use table has more-detailed information on input usage, namely how much of various kinds of
materials and labor an industry uses in production. Table 6 reports the U.S. Input-Output
table. To reduce the dimension of the space, the Input-Output use table is condensed into a
table with eighteen rows — fifteen rows for the manufacturing industries studied here, one row
for petroleum, one row for labor, and one for all other industries.?! Likewise, the aggregated
table has fifteen columns representing each industry’s use of the inputs. Each element of this
table is divided by its associated column sum to make a matrix S of input shares. The element

si; denotes the share of industry j’s inputs that come from industry ¢. Input-similarity between

19 Geographic distance is not applicable here because the KLEMS data measure productivity for industries,
not plants. So there is only one time series for the U.S. auto industry, although automobile production in the

United States takes place in many different states.
208ee Appendix C for more details.

21 The Input-output use table measures what inputs each industry uses. The make table measures what inputs
each industry produces. Given my interest in inputs, just looking at the use table seems reasonable. If instead,
I were interested in upstream links between industries, then one would want to combine information from both

the use and make tables.
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industries j and £, dj, is defined as the Euclidean distance between the two industries’ input
shares.

Figure 1 reports the distribution of the distance-based measures of input similarity. The
distribution has a mass at zero because the distance between an industry and itself is zero.
About eighty percent of the distribution is located between 0.25 and 0.6. The number of zero
distances is smaller for the cross-border distances because the Canadian and U.S. industries

have different input requirements.

4.4.2 Estimation by Linear Regression

The following regression explores the relationship between input-similarity and the correlation
between industries:

p(Azi, Azj) = By + Bydij + /82d12j + Uij

where p (Az;, Az;) is the correlation between productivity growth in industry ¢ and industry j.
The distances d;; are based on the input shares in 1992. Table 7 reports coefficients and the
R? of the regression for each possible set of pairings (i.e. a regression for all Canadian pairs,
another for all American pairs, and another for cross-border pairs). The table also reports the
F-test of the distance coefficients both being equal to zero. For both countries, input similarity
helps explain the pattern of productivity correlations. In particular, the F-test rejects the
hypothesis that input similarity does not help. As can be seen by the R? statistics, the input-
usage information is useful, but a great deal of unexplained variation remains. Whether the
unexplained variation comes from omitted explanatory variables or mismeasured productivity
growth is an open question. From Figure 2, the decline in correlation as a function of input-
similarity is somewhat greater for the U.S. estimates than for the Canadian estimates. The
evidence for cross border pairs depending on input-similarity is strongest for the estimated
productivity series.

To investigate further the cross-border effects, consider the following direct test of the border
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effect for all pairs, both within each country and across countries:
p (AZ“ AZJ) = 50 + /Bldij + B2di2j + ¢cross5 + Uuij

where § equals one if it is a cross border pairing and zero otherwise. Table 8 reports the results.
The border effect measured as ¢,,.,., is largest for the constructed productivity series. With the
average correlation between U.S. pairs at 0.27, a decline of 0.07 is somewhat small. The result
for the estimated productivity series is statistically significant. The values of ¢,,,s, found for

the other productivity measures are smaller and are not statistically significant.

4.4.3 Estimation by Semi-Parametric Methods

The correlation regressions reported in the previous section may be sufficient proof that (1) the
border effect is relatively small and that (2) the correlation between industries is dependent on
what inputs the industries use. This section reports additional evidence using the method of
Conley and Dupor. One advantage of their method is that it allows for changes in input usage
over time. For example, the subcomponents of an industry might change. These changes will
be reflected in the industry’s input usage and will cause changes in the distance measure of
input similarity.

Figure 3 plots correlation functions for all three productivity measures. For each produc-
tivity measure, three estimates of C (d) are reported. One correlation function (the thick black
line) is the estimate based on the assumption of no border effect. The second correlation
function (the line with circles) reports the correlation between two industries separated by the
border. The third correlation function reports the correlation between two industries located in
the same country. The thick solid line is the estimate of C(d) found by estimating the following

equation:

4
Azilzj = bpHy (dij)
k=1

for all pairings of 7 and j and with the restriction that b1 > bg. Appendix C defines { Hy, ()}izl,

the set of basis functions for the correlation function, and describes the estimation procedure
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in more detail. The estimation is a straightforward application of the methods in Chen and
Conley and no allowance is made for border effects. The sign restriction on by ensures that the
correlation matrix is positive definite, which is required to construct confidence intervals. The
gray interval is the bootstrap confidence interval.

The confidence interval is constructed by using a procedure described in Chen and Conley.
To construct a bootstrap confidence interval, one needs to simulate data. The current simula-
tions use the covariance matrix 2; of the productivity fluctuations z; . However, the covariance
matrix depends on the time-varying distances between industries. As such, a vector of i.i.d

errors u; with variance one can be constructed as
-1
ug = chol (2¢) ™" 2

where chol denotes the matrix operator that maps between a positive definite matrix ¥ and
its upper triangular Cholesky factorization. A simulation run is constructed by drawing with
replacement from the set of the errors {us }STzl for each time period a value uf and then multi-
plying it by the Cholesky factorization of the corresponding variance covariance matrix to get

a simulated productivity series

z; = chol () uy

For each of the 500 simulation runs, the coefficient estimates of C(d) are stored. These simula-
tions are then used to construct a 90 percent confidence interval for the covariance function.??

The second set of results allows for two border effects. The first controls for cross-border
pairs of the same industry and the second controls for all cross-border pairs of different indus-

tries.

AziAzj = @101 + P02 + Z by Hy, (dij)

22The confidence interval is constructed as follows. First, generate 500 simulations of the statistic of interest x;
where z* is the empirical estimate of the same statistic. Calculate the differences between the simulated statistics
and the empirical statistic. Denote the 5" percentile of these differences as ¢,,,, and the 95" percentile as Chigh-

The resulting confidence interval is [£* — (p; 0, T + Clop)-
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where 01 equals one when ¢ and j indicate the equivalent industries in the two different countries
and &2 equals one when ¢ and j indicates non-equivalent industries that are located in different
countries. In addition, the restriction of the b;’s is not imposed because these off-diagonal
constants imply that the resulting correlation matrix is not necessarily positive-definite. The
thin line reports the value of > by Hy (d) and the line with circles reports the value of ¢y +
> bipHj, (dij). Hence the difference between the two lines is the value of ¢q, the effect of the
border.

The figure reports C' (d) over the entire range of observed distances. In addition, the dashed
lines indicate the interval (0.23,0.70) that contains 90 percent of the non-zero distances. The
estimates of C(d) are all fairly steep. For example, within-country industries that use similar
inputs (a distance of 0.25) have an estimated correlation for labor productivity of 0.36 which
declines to 0.10 when the distance increases to 0.70.

Table 9 reports the cross-border coefficients and the associated sampling uncertainty. The
first result is a test of the null hypothesis of no border effect between the same industry in
the two countries. These results are generated by using the same bootstrap simulations of the
data generating process that made no allowance for border effects. As an additional check,
a 90 percent confidence interval for the cross border coefficient is estimated by an alternative
bootstrap procedure in which the vector of growth rates is sampled with replacement. This
process is typically less efficient (Horowitz 2002) but is valid under the assumption of no serial
correlation.

For labor productivity, one would fail to reject the null hypothesis of no same-industry border
effect at the 90 percent or higher significance level. For MFP and the estimated productivity
series, one would reject the null hypothesis that ¢, equals zero at the 95 percent significance
level. For all three productivity measures, one would reject the null hypothesis of no border
effect for non-identical industries at the 95 percent significance level. Similar results are found
with the 90 percent confidence intervals generated by the alternative bootstrap procedure. On
the basis of these tests, the statistical evidence supports the existence of a border effect; cross-
border industries are less correlated than similar industries located in the same country. The

evidence is weaker for cross-border pairs of the same industry.

22



Having established statistical significance, the next question concerns the border’s economic
significance. As mentioned above, the dependence on input similarity shows a fairly strong
decline. Industries that use similar inputs (a distance of 0.23) have an estimated labor pro-
ductivity correlation 0.26 more than industries that are quite dissimilar (a distance of 0.70).
Crossing the border results in a 0.14 decline in correlation. Hence, for labor productivity, cross-
border pairs that use similar inputs are more correlated than within country pairs that use
dissimilar inputs. The border effect is yet smaller for the multifactor and estimated productiv-
ity series. Therefore, although the border effect does exist, it is much smaller than Costello’s

evidence suggests.

Further Hypothesis Testing One might be interested in knowing how well the estimated
model matches the unconditional covariance matrix. To test this hypothesis, I us a classical
likelihood ratio statistic. The statistic suggests that unexplained influences on the comove-
ment remain. Overall, however, the input-based measure of similarity appears to be a useful
organizing principle.

The first measure of model fit is an R? statistic. These distance based regressions do
have fairly low R? statistics: with values of 0.03 for labor productivity, 0.04 for multi-factor
productivity, and 0.03 for the estimated productivity measure. However, statistical testing of
the null hypothesis of no explanatory power would be rejected because of the large number of
observations. An F-test of no statistical significance would have 5 and (30 % (30 — 1)/2) * 36
degrees of freedom. As such, given the number of data points, even for the low R? statistics
reported here, one would reject the restriction of no explanatory power.

If the distance matrix were fixed at a constant value, then the distance based covariance
matrix could be viewed as a restricted version of the sample covariance matrix.?? Further-
more, assuming that the vector of productivity fluctuations are normally distributed implies
the following likelihood ratio test (Hamilton, 1994):

y_1

T T
T _ _ T 1 _
L(Qw) = L (Qr) = 7 log o> 5 > 2y - 5 log 105 + 3 > 205
t=1 t=1

21 continue to normalize the productivity growth rates by dividing by the sample standard deviations.
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With 15 industries in each of the two countries, the number of degrees of freedom is large,
with 465 coefficients in the sample covariance ();;. The distance-based measure has only the 30
diagonal terms, and the 4 distance coefficients. Hence, the current application has 431 degrees
of freedom with a resulting 95 percent critical value of 480.40. Fixing the distance matrix at the
1987 values and assuming no border effects, the estimated likelihood ratio is 536.44 for labor
productivity, 504.67 for the multifactor productivity, and 442.93 for the estimated productivity.
On the basis of these values, one would reject the null hypothesis that input-usage alone can
explain the correlation matrix for either multifactor or estimated productivity. Therefore, as
with the low R? statistics reported above, the evidence supports unexplained variation in the
correlation matrix. Understanding what additional factors or refinements could explain this

variation is a topic for future research.

5 Conclusions

The study has made three contributions to understanding industry-level productivity comove-
ment. First, for Canada and the United States, cross-border productivity fluctuations are
more highly correlated than had been previously reported. Second, the similarity of input us-
age can help explain the pattern of covariances between industries, confirming earlier work.
Third, a border effect exists. The correlation in productivity growth between similar industries
in Canada and the United States is smaller than the correlations between similar industries
within a country. In contrast to some border-effect estimates, the difference between cross-
border correlations and within-country correlations of similar industries is not overwhelming.
In particular, for a given industry, its correlation with a same-country industry that uses dis-
similar inputs is less than its correlation with a cross-border industry that uses similar inputs.

These results suggest directions for further theoretical and empirical research. In particular,
understanding what factors generate the dependence on input usage could lead to a better
understanding of the sources of productivity fluctuations. Perhaps the dependence on input
similarity reflects a measurement problem. Improvements in the quality of intermediate inputs

could be measured as improved productivity by the users rather than by the producers of the
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input.

As discussed in Engel and Rogers (2001), the ‘first generation’ of border-effect papers docu-
ment the size of the border effect. As Engel and Rogers did for prices, a ‘second generation’ of
papers should explore the economic forces behind border effects for productivity. For productiv-
ity, one could follow the example of Evans (2003), who uses firm-level data to better understand
border effects for trade. In particular, she examines variations in sales between domestic and
foreign multinationals to determine the importance of nationality versus location. If the data
were available, a similar study for productivity growth would be informative. In particular, if
one could obtain firm-level information on intermediate input usage, then one might begin to

understand the dependence on input usage.
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A Concerns about Missing Data on Materials Inputs

For many countries, the available data sets (such as the OECD STAN data set), do not have
data on intermediate input use. In the United States, no statistical agency publishes data
on intermediate input use at frequencies higher than annual. Because productivity growth is
measured as the growth of output minus the growth of inputs, missing inputs could therefore
lead to a contaminated productivity series. Two different strategies can attempt to deal with
this problem. First, production functions can be assumed to be separable. Observed inputs such
as labor and capital move together with the missing inputs. The problem with the separability
assumption is that counterexamples are easy to find. For example, suppose that the workers
vary their effort. When they have work to do, they work. When there is nothing to do, they are
still counted as working. In that case, to produce more output, a firm may increase the amount
of intermediate inputs without changing the amount of employed labor. Hence, the production
function is not separable. The other strategy is to use output that has be constructed with the
contribution of intermediate inputs removed — that is, value-added data.

Basu and Fernald (1995), however, showed that these intermediate inputs can still con-
taminate productivity measures constructed with value-added data. One can use data on
intermediate inputs and gross output to measure value added in several different ways. One
approach measures value added as the growth rate of output minus the growth rate of interme-
diate inputs, weighted by expenditure-share. Basu and Fernald discuss other approaches and
show that these other methods have more biases. Abstracting away from energy and services,
one can express valued added as follows. Assuming constant returns to scale, real gross output

can be written as a combination of materials and value added:
dy = (1 — sp) dv + sppdm,

where s, denotes the expenditure on materials as a fraction of total input expenditure. This

equation can be rewritten as an expression for value added:

1
dv =

1= sy,

(dy — smdm) .
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This equation is sensible with perfect competition because it implies that if gross output and
materials both increase by one percent, value added will also increase by the same amount.
In addition, looking at value added makes sense when looking at aggregate measures, such as
GDP.

Notice, however, the implication for the measure of productivity when the elasticity of
output with respect to materials +,, differs from the expenditure share, such as when the

industry has increasing returns to scale.

1

dv = 1 ((ypdk + v dl + ~vpdm ) — spdm) + 1 dz
— 5 — Sm
= Tk g2y Im T mg, dz
1—s, 1—s, 1—s, — Sm

But in estimating this equation, one will actually estimate the following equation

dv = ypdk +vjdl + dz" (8)

where

— 1
Azt = Im =5 g, + dz
1—sm, 1—s,

Hence, as long as 7,,, does not equal the expenditure share s,,, then the productivity mea-
sure will be contaminated with material usage data. Material usage is likely correlated across
industries within a country because of demand linkages and aggregate shocks such as monetary
policy. Therefore one might expect to find larger border effects when examining productivity

calculated with value-added data than with gross output data.?*

* Estimating the coefficients in equation (8) may mitigate the problem of using value added data if the
instruments are correlated with the omitted variable (dm). With the instruments correlated with material
usage, the estimated coefficients should be biased in such a way to reduce the amount of material usage in the

residual.
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A.1 The Implications of Not Having Data on Materials Inputs

As mentioned earlier, an advantage of the KLEMS data set over other data sets is that the
KLEMS data set has information on intermediate inputs. This section reports two sets of
results to describe the effect of excluding the intermediate inputs data. In the first set, the
measure of output is the value-added measure expressed as the growth rate of gross output
minus the share-weighted growth rates of materials and services. The only inputs are labor and
energy. Therefore, for the value-added data, productivity is calculated as the residual from the

following regression:

(Ay — smAm — ssAs) = Av

Av = v Al+~vy,Ae+z

An alternative is to measure output as gross output but still have as inputs only labor and
energy.

Ay =y Al + v, Ae+ 2

This equation is similar to the equations estimated in Conley and Dupor (2003) and Costello
(1993).

In terms of simple correlations, the different measures do not make a substantial difference.
The first rows of Table A1 report the average correlation between cross-border pairs of the same
industry for the estimated productivity and these two new measures. The number of significant
correlations is also similar.

For the border effect, the magnitudes of ¢, and ¢, are qualitatively similar. For the measures
without intermediate inputs, non-identical industries have a somewhat larger border effect. For

all three measures, the correlation patterns depend on the similarity of input use.
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B Tests for Weak Instruments

Because input choice is likely correlated with productivity changes, estimation of production
functions is often done by instrumental variables. However, in selecting instrumental variables,
a researcher must find variables that are both uncorrelated with the productivity changes and
correlated with the explanatory variables. A growing literature has documented that if the
instruments are only weakly correlated with the explanatory variables then parameter estimates
may be imprecisely estimated. This section applies the tools developed in this literature to the
estimation done here.

This section first reports regression-based tests of whether the instrument variables are
uncorrelated with the explanatory variables. In other words, a test of whether the instruments
are weak. For a single explanatory variable x with instruments z, the standard approach for

weak instruments is to estimate the following equation:

XlIZBl‘i‘u

and report the F-statistic of whether §; (a vector) equals zero. Although this approach is
informative for a single explanatory variable, two explanatory variables requires a different
approach. In particular, one wants to know the extent to which the instruments can explain
each explanatory variable independent of the other explanatory variable. As such I define two
new variables 1 and Zo where each variable is defined as the part of the original variable that
is orthogonal to the other variable. In other words,. Z; is the residual from a regression of x;

on xo. In addition I define as vector Z; as the part of z orthogonal to xs.

1 = Zifi+u

Ty = Zafy+u

Table A2 reports the F-statistics for testing independently the null hypotheses 3; = 0 and
Ba = 0. These statistics tell us how much information is contained in z to explain x; independent

of m5 (and vice versa). This statistic is analogous to the partial R? statistic that is reported
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by Shea. I report the F-statistic because it is more readily interpretable than the partial R?
statistic.

To reject, at the standard 10 percent significance levels, the null hypothesis that the instru-
ments are not informative about an explanatory variable, the F-test statistic must be greater
than two. On the basis of these statistics, we can conclude that these instruments have some
information regarding the explanatory variables. Stock and Staiger argue that standard critical
values are too low and propose as a rule-of-thumb that the F-test statistic should be above
10. Therefore, given these low F-statistic values, estimating industry-specific coefficients would
likely ask too much of these instruments. The approach adopted here of estimating the same
coefficients for many different industries does have the potential of resulting in a more efficient
estimate.

An additional check would be to look at the robustness of the estimates. One way to assess
robustness is to ask whether any of the industries have particular leverage in determining the
coefficient estimates. The rest of Table A3 reports results for dropping a particular industry
from the estimation routine. For the U.S. industries, the printing industry has a lot of leverage
because dropping it results in the nondurable estimate of returns-to-scale p falling to 0.8.
However, because the F statistic for the printing industry is relatively large when compared
with the other nondurable industries, I have greater confidence in the estimate with the printing
industry than without. Likewise, the transportation industry seems responsible for the high
value of &4 for the durable industries. None of the Canadian industries appear to have high

leverage. The estimated coefficients are similar for all measures.

B.1 An Alternative Estimation Strategies

The test for weak instruments suggests a need for caution in using these coefficient estimates.
Some confidence is gained because the paper’s three measures of productivity — labor, multifac-
tor, and estimated — imply similar comovement results. To build further confidence, this section
reports results for a productivity measure that is calculated using the ordinary least squares
estimates of the production parameters. These estimates, by definition, do not suffer from the

weak instrument problem; but, the estimates may be biased because of the endogeneity of in-
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put choice. Even if inputs were endogenous the sign and size of the resulting bias is uncertain.
Although input choice may be correlated with productivity movements, the direction of the
correlation depends on a firm’s economic environment. A standard RBC model, for example,
would imply that input usage would increase immediately in response to a positive technology
shock. On the other hand, in a sticky price model (Gali 1999) or in a flexible price model
with real rigidities (Vigfusson 2004), the response to a positive technology shock may be an
immediate fall in input usage. Hence, theory can not determine the sign of the bias implied by
using endogenous regressors. Furthermore, even if the parameter estimates were biased, it is
unclear that these biases would imply my main comovement findings.

The parameter estimates are reported in Table A4. The greatest change in the coefficient
estimates is the values of the utilization coefficients. Particularly for Canada, the estimates
are very small. For both Canadian and American industries, the returns-to-scale are somewhat
closer to one. Given the small changes in the coefficients the cross-border correlations reported
in Table A5 are not that different. The largest changes are that the Printing industries are
somewhat more highly correlated and the cross-border correlations between the American and

Canadian Fabricated Metals and Industrial Machinery are somewhat smaller.
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C Details on the Estimation

The following section describes the calculation behind the estimation procedure used to calculate
the covariance between industries as a function of economic distance. The covariance is written

as the weighted sum of the basis functions Hy, ():
C(dij) = bpHy (dij)

where Hj, () arises from the spectral representation of the covariance function. The spectral

representation is implemented here with the following specification
Hy, (dij) = /h (wdij) By j, (dhij) duw

where Bl | (d;;) is the first derivative of the k-th b-spline of order m.?® (The B-splines used
here are of second order and hence appear as a set of over lapping bell curves.) The function

h (x) is defined as
Ji-2)2 (x)

h(z) = 202721 (k/2) ey
X

where J(_g)/5 (7) is a Bessel function of the first kind and [ is the dimension of the location
vector. In the current application, [ equals the number of inputs in the input-output table. The
covariance matrix is computed by using the values of {b;} and the distance between industries.
The off-diagonal elements of the covariance matrix are defined as a function of the distance
between the two industries C(d;;). The diagonal elements are defined as O'? + C(0) where C(0)
is the value of by Hy (0) and O‘? is the industry-specific covariance term. The own-industry

covariances are computed as

T
1
O’? = max (T ZAzjzt —C(0) ,0)
t=1

25 Judd (1998, p 227-28) gives a concise discussion of b-splines.
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The values of by are computed as the solution to the following least squares problem, subject

to the constraint that b; is non-negative and that bx1q > b.

T n—1

minz Z Z (Azi‘}Azﬁ - Zkak (d%))Q

t=1 i=1 j#i

T n—1

S (astAzy - b (a5))

t=1 i=1 j#i

T n—1

3NN (A A — 6y > bpHy (dF))?

t=1 i=1 j#i
T n—1

+Y D (A AL — ¢y =Y biHy (dF))?

t=1 =1

where Azf is the productivity measure from Canadian industry j, Az is the productivity
measure from the American industry j, d;; is the distance between Canadian industries ¢ and
J» dij is the distance between American industries 7 and j, and df; is the distance between
Canadian industry ¢ and American industry j. When ¢; and ¢, are set equal to zero, these
conditions on the coefficient estimates ensure that the resulting variance covariance matrix is a

valid positive-definite matrix (Yaglom, 1987).
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D Tables

Table 1: A List of the Durable and NonDurable Industries Studied Here

Durable SIC Code NonDurable SIC Code
Lumber 24 Food 20
Furniture 25 Textiles 22
Glass Stone & Clay 32 Apparel 23
Primary Metals 33 Paper 26
Fabricated Metals 34 Printing 27
Industrial Machinery 35 Chemicals 28
Electrical Machinery 36 Rubber and Plastics 30
Transportation (Equipment) 37

Table 2 Coefficient Estimates

Returns to Scale

Utilization ¢

Point Estimate 95 percent
Confidence Interval

United States

Nondurable 0.98 (0.95,1.11)
Durable 0.93 (0.81,1.04)
Canada

Nondurable 1.42 (1.25,1.58)
Durable 1.16 (1.07,1.25)

Point Estimate

0.025
0.10

0.025
0.038

95 percent
Confidence Interval

(-0.06,0.11)
(0.00,0.19)

(-0.05,0.10)
(-0.04,0.11)

Notes: Coefficients are estimated using two-step GMM.

The partition of industries into durable and nondurable are reported in Table 1.
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Table 3 Correlations Between Productivity Growth Rates for American and Canadian Industry pairs

Industry
Productivity Measure

SIC Code Labor Multifactor Estimated
20 Food 0.26 0.15 0.09
22 Textiles 0.26 -0.12 0.00
23 Apparel -0.14  0.36* 0.12
24 Lumber -0.09 0.12 0.46*
25 Furniture -0.04  0.50* 0.54*
26 Paper 0.62* 0.49* 0.42%*
27 Printing 0.44*  0.33%* 0.24
28 Chemicals 0.55* 0.56%* 0.51%*
30 Rubber and Plastics 0.29*%  0.54* 0.47*
32 Glass Stone & Clay 0.43*  0.64* 0.64*
33 Primary Metals 0.51* 0.33* 0.18
34 Fabricated Metals 0.26 0.37* 0.33*
35 Industrial Machinery 0.30*  0.35* 0.30*
36 Electrical Machinery 0.58*  0.44* 0.39*
37 Transportation Equipment 0.60*  0.62* 0.38*

* denotes correlations that are statistically significant

at the 90 percent significance level.

Bold text denotes industries examined in Costello (1993).
Sample Period 1961-1997
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Table 5: Fraction of Variance Explained by Aggregate and Input-Specific Technologies.

Industry

20 Food

22Textiles

23 Apparel

24 Lumber

25 Furniture

26 Paper

27 Printing

28 Chemicals

30 Rubber and Plastics
32 Glass Stone & Clay
33 Primary Metals
34 Fabricated Metals
35 Industrial Machinery
36 Electrical Machinery
37 Transportation Equipment
Average

Industry

20 Food

22Textiles

23 Apparel

24 Lumber

25 Furniture

26 Paper

27 Printing

28 Chemicals

30 Rubber and Plastics
32 Glass Stone & Clay
33 Primary Metals
34 Fabricated Metals
35 Industrial Machinery
36 Electrical Machinery
37 Transportation Equipment
Average

Agg Input Specific

0.19
0.14
0.10
0.06
0.17
0.18
0.21
0.09
0.17
0.22
0.12
0.25
0.09
0.08
0.07
0.14

0.15
0.07
0.09
0.08
0.05
0.10
0.09
0.08
0.07
0.07
0.05
0.10
0.05
0.05
0.03
0.07

Labor

0.10
0.20
0.08
0.11
0.13
0.40
0.31
0.26
0.16
0.57
0.23
0.25
0.13
0.14
0.07
0.21

Labor
0.13
0.09
0.10
0.11
0.07
0.26
0.18
0.21
0.10
0.21
0.11
0.14
0.07
0.07
0.02
0.12

United States

Agg Input Specific

0.08
0.07
0.18
0.03
0.17
0.07
0.15
0.05
0.13
0.10
0.06
0.20
0.07
0.07
0.08
0.10

0.14
0.06
0.11
0.06
0.04
0.05
0.06
0.07
0.06
0.04
0.10
0.11
0.05
0.06
0.07
0.07

Bold text denotes industries examined in Costello (1993).
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MFP

0.13
0.23
0.30
0.15
0.27
0.40
0.54
0.40
0.26
0.59
0.28
0.48
0.24
0.31
0.17
0.32
Canada
MFP
0.44
0.24
0.34
0.26
0.16
0.39
0.38
0.60
0.26
0.38
0.51
0.46
0.22
0.28
0.13
0.33

Estimated
Agg Input Specific
0.08 0.08
0.07 0.19
0.16 0.26
0.03 0.11
0.15 0.22
0.07 0.31
0.16 0.45
0.05 0.25
0.13 0.22
0.12 0.58
0.06 0.23
0.21 0.41
0.06 0.16
0.07 0.23
0.08 0.13
0.10 0.26

Estimated
0.26 0.36
0.08 0.15
0.09 0.16
0.09 0.20
0.06 0.11
0.09 0.37
0.10 0.31
0.09 0.36
0.08 0.17
0.06 0.29
0.16 0.52
0.16 0.34
0.09 0.20
0.09 0.19
0.14 0.13
0.11 0.26



Table 6: A subsection of the U.S. Input Output Table 1987

Industries
Inputs 22 26 28 29 33 35 36 37
Other 22 22 29 8 34 18 20 17
20 Food o o o o o0 o0 o0 o0
22 Textiles 29 1 0 0 0 0 0 0
26 Paper 0 29 2 0 O 0 1 0
28 Chemicals 218 3 1 3 0 2 1
29 Petroleum 0 0 1 8 0 0 0 0
33 Primary Metals 0 0 0 0 27 10 7 5
34 Fabricated Metals 0 0 1 0 1 4 4 7
35 Industrial Machinery 0 0 0 0 2 15 1 )
36 Electrical Machinery 0 0 0 0 0 7 16 4
37 Transportation Equipment 0 0 0 0 O 0 0 23

Labor 22 26 25 5 26 39 39 26

Notes: Each table entry reports the percentage of total inputs used by the industry
listed in the column produced by the industry listed in the row.
Bold text denotes the input share produced by the own-industry.

Table 7 : OLS Regressions on Distance-Based Correlations

R? of Regression F-test of No Explanatory Role for Inputs

U.S. Canada Cross U.S. Canada Cross
Labor 0.11 0.22 0.02 6.1 14.5 2.3
P-values <0.01 <0.01 0.1059
Multifactor  0.23 0.17 0.07 15.4 10.5 7.6
P-values <0.01 <0.01 <0.01
Estimated  0.26 0.20 0.10 18.1 12.7 11.4
P-values <0.01 <0.01 <0.01

Notes: For the U.S. and Canada regressions, there are 2 and 15*7-3 degrees of freedom
For the Cross Border regression, there are 2 and15*14-3 degrees of freedom
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Table 8: Estimated Coeflicients for Border Effect

Bo B4 By  bcross R? F-test

Labor Productivity 0.44 -0.40 0.01 -0.04 0.04  4.57
2.91 -0.54 0.01 -1.44
MFP 0.79 -1.77 1.62 -0.01 0.06 6.17

5.86 -2.42 1.83  -0.55
Estimated Productivity 0.81 -2.05 1.68 -0.07 0.12 14.7
5.89 -2.74 1.84 -2.55
Notes: Numbers in italics are t-statistics for the hypothesis that
coefficient equals zero. F-test is that 8, and (3, equals zero.

Table 9: Testing for A Border Effect

Productivity: Labor MFP Estimated
Cross-Border Decline: Identical Industries -0.07 -0.16 -0.14

P (1 gim < ®1cst|Ho ¢1 =0) 0.11 0.01 0.02
90% Confidence Interval (-0.20 0.01) (-0.31-0.04) (-0.28 -0.04)
Cross-Border Decline: Non-identical Industries -0.15 -0.12 -0.11

P (¢2,sim < ¢2,est|H0 ¢2 = O) 0 0 0

90% Confidence Interval (-0.21 -0.09) (-0.19 -0.04) (-0.16 -0.06)
Confidence Interval for ¢; i, — @2 5im (-0.03 0.14)  (-0.16 0.03)  (-0.16 0.07)

Notes: Hypothesis Tests are generated using 500 Simulations of
Distance-Based Correlation Matrix DGP with no Border Effect.
Confidence Intervals are generated by drawing with replacement .
from vector time series of productivity growths. 500 Simulations
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E Figures

Figure 1: Histogram of Distances

0.18

0.16

0.14

0.12

0.1r

0.08

0.06

0.04

0.02

0 0.2

0.4

0.6

42

Bl us
[ Canada
[ ] Cross—Border

0.8




Figure 2: The Correlation of Productivity Growth as Function of Similar Input Use
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Figure 3 Correlation Between Industries As Function Of Input Similarity
Figure 3a: Labor Productivity
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Figure 3b: Multifactor Productivity
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Figure 3c: Estimated Productivity
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Notes: Thick Line, C(d) estimated under null hypothesis of no border effect

Thin Line: Estimate of C(d) absent a border effect, Circles: Estimate of C(d) +¢, (include a border effect’
Grey Area 90 percent confidence interval of C(d) under null of no border effect.

Dashed Lines. Interval Between 0.23 and 0.7 that includes 90 percent of non-zero distances
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F Appendix Tables

Table Al: Effect of Not Having Intermediate Inputs Data

Gross Output

Baseline - Value Added No Intermediate Inputs

Average Correlation 0.3192 0.3158 0.3212
Significant Correlations 7 8 9
R -0.092 -0.113 -0.059
s -0.081 0.113 -0.124
d C(d)

0 0.511 0.507 0.461
0.126 0.372 0.404 0.345
0.253 0.354 0.357 0.335
0.379 0.281 0.260 0.266
0.505 0.162 0.147 0.155
0.632 0.087 0.079 0.085
0.758 0.047 0.042 0.047
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Table A3 Comparing Coefficient Estimates

Returns to Scale 1 Utilization ¢

GMM OLS GMM OLS
United States
Nondurable 0.98 0.96 0.025 0.04
Durable 0.93 1.09 0.10 0.06
Canada
Nondurable 1.42 1.28 0.025 -.0.003
Durable 1.16 1.21 0.038  0.009
Notes:

The partition of industries into durable and nondurable are reported in Table 1.

Table A4 Correlations Between Productivity Growth Rates for American and Canadian Industry pairs

Industry
Productivity Measure

SIC Code Labor Multifactor Estimated OLS
20 Food 0.26 0.15 0.09 0.12
22 Textiles 0.26 -0.12 0.00 -0.04
93 Apparel 014 0.36* 0.12 0.23
24 Lumber -0.09 0.12 0.46* 0.48*
25 Furniture -0.04  0.50* 0.54%* 0.42*
26 Paper 0.62*  0.49* 0.42%* 0.49*
27 Printing 0.44*  0.33* 0.24 0.31*
28 Chemicals 0.55* 0.56%* 0.51%* 0.55%*
30 Rubber and Plastics 0.29%  0.54* 0.47* 0.54*
32 Glass Stone & Clay 0.43*  0.64* 0.64* 0.53*
33 Primary Metals 0.51* 0.33%* 0.18 0.10
34 Fabricated Metals 0.26  0.37* 0.33* 0.25
35 Industrial Machinery 0.30*  0.35* 0.30* 0.21
36 Electrical Machinery 0.58%  0.44* 0.39* 0.28%*
37 Transportation Equipment 0.60*  0.62* 0.38%* 0.32%

* denotes correlations that are statistically significant at the 90 percent significance level.
Bold text denotes industries examined in Costello (1993).
Sample Period 1961-1997
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